Extensions 1→N→G→Q→1 with N=C3xD5 and Q=C22:C4

Direct product G=NxQ with N=C3xD5 and Q=C22:C4
dρLabelID
C3xD5xC22:C4120C3xD5xC2^2:C4480,673

Semidirect products G=N:Q with N=C3xD5 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
(C3xD5):(C22:C4) = C2xD6:F5φ: C22:C4/C22C22 ⊆ Out C3xD5120(C3xD5):(C2^2:C4)480,1000
(C3xD5):2(C22:C4) = D5xD6:C4φ: C22:C4/C2xC4C2 ⊆ Out C3xD5120(C3xD5):2(C2^2:C4)480,547
(C3xD5):3(C22:C4) = D5xC6.D4φ: C22:C4/C23C2 ⊆ Out C3xD5120(C3xD5):3(C2^2:C4)480,623
(C3xD5):4(C22:C4) = C2xD10.D6φ: C22:C4/C23C2 ⊆ Out C3xD5120(C3xD5):4(C2^2:C4)480,1072
(C3xD5):5(C22:C4) = C6xC22:F5φ: C22:C4/C23C2 ⊆ Out C3xD5120(C3xD5):5(C2^2:C4)480,1059

Non-split extensions G=N.Q with N=C3xD5 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
(C3xD5).(C22:C4) = D10.20D12φ: C22:C4/C22C22 ⊆ Out C3xD5120(C3xD5).(C2^2:C4)480,243
(C3xD5).2(C22:C4) = D10.10D12φ: C22:C4/C2xC4C2 ⊆ Out C3xD5120(C3xD5).2(C2^2:C4)480,311
(C3xD5).3(C22:C4) = C3xD10.3Q8φ: C22:C4/C2xC4C2 ⊆ Out C3xD5120(C3xD5).3(C2^2:C4)480,286

׿
x
:
Z
F
o
wr
Q
<